
Automatic Programming Revisited
Part I: Puzzles and Oracles

 Rastislav Bodik

University of California, Berkeley

Once you understand how to write a program, get
someone else to write it. Alan Perlis, Epigram #27

Presenter
Presentation Notes
Why is it that Moore’s Law hasn’t yet revolutionized the job of the programmer? Compute cycles have been harnessed in testing, model checking, and autotuning but programmers still code with bare hands. Can their cognitive load be shared with a computer assistant?

Automatic programming of the 80’s failed relying on too much AI. Later, synthesizers succeeded in deriving programs that were superbly efficient, even surprising, but these synthesizers first had to be formally taught considerable human insight about the domain.

Using examples from algorithms, frameworks, and parallel programming, I will describe how the emerging synthesis community rethought automatic programming.

The first innovation is to abandon automation, focusing instead on the intriguing new problem of how the human should communicate his incomplete ideas to her computerized algorithmic assistant, and how the assistant should talk back. As an example, I will describe programming with angelic oracles.

The second line of innovation changes the algorithmics. Here, we have replaced deductive logic with constraint solving. Indeed, new synthesis is to its classical counterpart what model checking is to verification, and enjoys similar benefits: because algorithmic synthesis relies more on compute cycles and less on a formal expert, it is easier to adapt the synthesizer to a new domain.

The Exascale Programming Challenge

The Exascale Programming Challenge

More levels of hierarchy

Accelerators everywhere

The revenge of Ahmdal’s Law

Programmers will be swamped in design choices

3

Presenter
Presentation Notes
Get the computer to program itself.

The Exascale Programming Opportunity

How can CPU cycles help in programming?

5

The SKETCH Language

try it at bit.ly/sketch-language

6

7

SKETCH: just two constructs

7

spec: int foo (int x) {
 return x + x;
 }

sketch: int bar (int x) implements foo {
 return x << ??;
 }

result: int bar (int x) implements foo {
 return x << 1;
 }

Presenter
Presentation Notes
say how much you gain by sketch, as opposed to trying all candidates from the language: benefit of insight

what’s the benefit of smart solving, as opposed to iteration

SKETCH is synthesis from partial programs

8

SKETCH
synthesizer

partial program

correctness criterion
completion

x + x

x << ??

x << 1

No need for a domain theory. No rules needed to rewrite
x+x into 2*x into x<<1

Demo 1: division of a polynomial
int spec (int x) {
 return x*x*x-19*x+30;
}

#define Root {| ?? | -?? |}

int sketch (int x) implements spec {
 return (x - Root) * (x - Root) * (x - Root);
}

Note: Sketch divides polynomials slowly but it knows nothing
about finding roots of polynomials. This generality enables it to
do synthesis of arbitrary programs. 9

10

Example: Silver Medal in a SKETCH contest

4x4-matrix transpose, the specification:

int[16] trans(int[16] M) {
 int[16] T = 0;
 for (int i = 0; i < 4; i++)
 for (int j = 0; j < 4; j++)
 T[4 * i + j] = M[4 * j + i];
 return T;
}

Implementation idea: parallelize with SIMD

10

11

Intel shufps SIMD instruction

SHUFP (shuffle parallel scalars) instruction

11

x1 x2

return

12

The SIMD matrix transpose, sketched
int[16] trans_sse(int[16] M) implements trans {
 int[16] S = 0, T = 0;
 repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);
 repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);
 return T;
}
int[16] trans_sse(int[16] M) implements trans { // synthesized code
 S[4::4] = shufps(M[6::4], M[2::4], 11001000b);
 S[0::4] = shufps(M[11::4], M[6::4], 10010110b);
 S[12::4] = shufps(M[0::4], M[2::4], 10001101b);
 S[8::4] = shufps(M[8::4], M[12::4], 11010111b);
 T[4::4] = shufps(S[11::4], S[1::4], 10111100b);
 T[12::4] = shufps(S[3::4], S[8::4], 11000011b);
 T[8::4] = shufps(S[4::4], S[9::4], 11100010b);
 T[0::4] = shufps(S[12::4], S[0::4], 10110100b);
}

12

From the contestant email:
Over the summer, I spent about 1/2
a day manually figuring it out.
Synthesis time: 30 minutes.

Demo 2: 4x4 matrix transpose
pragma options "--bnd-unroll-amnt 6 --bnd-inbits 3 --bnd-cbits 6";

int[16] transpose(int[16] mx){
 int x, y;
 for(x = 0; x < 4; x++)
 for(y = 0; y <= x; y++)
 mx[4*x+y] = mx[4*y+x];
 return mx;
}

generator int[4] shufps(int[4] xmm1, int[4] xmm2, bit[8] imm8){ /* automatically rewritten */
 int[4] ret;
 ret[0] = xmm1[(int)imm8[0::2]];
 ret[1] = xmm1[(int)imm8[2::2]];
 ret[2] = xmm2[(int)imm8[4::2]];
 ret[3] = xmm2[(int)imm8[6::2]];
 return ret;
}

int[16] sse_transpose(int[16] mx) implements transpose {
 int[16] p0 = 0;
 int[16] p1 = 0;
 // Find the extra insight (constraint) that this version communicates to the synthesizer.
 int steps = ??;
 loop(steps){ p0[??::4] = shufps(mx[??::4], mx[??::4], ??); }
 loop(steps){ p1[??::4] = shufps(p0[??::4], p0[??::4], ??); }
 return p1;
}

13

How can synthesis help?

In this example, our programmer possessed enough
knowledge to actually write the program himself.

The synthesizer saved him from tedious details, like a
compiler.

Note we did not have to teach that compiler any
SIMD optimizations, as is usually necessary.

In the next example, the synthesizer will help us find
the program (actually, a solution to a puzzle). We
could not solve the problem without the synthesizer.

14

The Hat Game

There are n players in a room. Someone will soon come by and
put hats labeled 0 to n-1 on each of their heads. There may be
multiple hats with the same number.

Once the hats are in place, the players cannot communicate.
Each player must then guess which hat is on their head. A
player can see everyone else’s hat, but not their own.

The challenge is for the group to come up with a strategy such
that at least one person correctly guesses their own hat.

Assume the group knows n before they strategize.

15

Presenter
Presentation Notes
Intro
-Case study in which we used angelic programming

Points
-Explain game
-Write down guess

Transition
-Lets look at how we would solve this problem for n=2

Color of hat the
player can see

What player P0
will guess

What player P1
will guess

0
1

Finding a winning strategy for n=2

There are only 16 strategies to consider.
We can find a winning one manually.

16

0

1

0 0

P0 P1

1 0

1

0

Presenter
Presentation Notes
Intro

Points
-Simple enough that we can solve and verify by hand
-Define function
-Walk through one case

Finding a winning strategy for n=3

There are now 7,625,597,484,987 possible strategies.
We gave up on finding a winning one manually.

17

Colors of hats
the player sees

What player
P0 will guess

What player
P1 will guess

What player
P2 will guess

0,0
0,1
0,2
1,0
1,1
1,2
2,0
2,1
2,2

Presenter
Presentation Notes
Intro

Points
-Well we tried, but it was to complex to think about how each player effects the rest

Transition
-But we can use an oracle to fill in the table for us

The synthesis correctness condition (n=3)

p0_strategy(p1_hat, p2_hat) : int {
 p0 : int[3][3] = { ??(0,1,2), ??(0,1,2) … }
 return p0[p1_hat][p2_hat];
}

…

forall (i, j, k) from i, j, k in [0,2]
 assert i = p0_strategy(j, k)
 or j = p1_strategy(i, k)
 or k = p2_strategy(i, j)

 18

Computing a winning strategy for n=3

We asked an oracle to compute a winning strategy.
There are 10,752 of them.

19

Colors of hats
the player sees

What player
P0 will guess

What player
P1 will guess

What player
P2 will guess

0,0 0 1 2
0,1 1 0 1
0,2 2 2 0
1,0 1 2 0
1,1 2 1 2
1,2 0 0 1
2,0 2 1 0
2,1 0 0 2
2,2 1 2 1

Presenter
Presentation Notes
Intro

Points
-Forecast how to fill in the table
-We asked an oracle to give us a correct table which would work

Transition
-This is still the same type of constraint solving at a much larger level

The Hat Game, Revisited

Now assume that the players do not know the total number of
players, n, or their own id, k, until the hats are placed.

Their winning strategy thus must be a function f(k, n, hats).

Our goal is to devise such a function f. This is our “program”.

We (humans) will observe the (oracle’s) winning strategies for
n=3 and generalize them for arbitrary n.

20

Presenter
Presentation Notes
Intro

Points
-We don’t know n
-Now we need to synthesize a function in k, n, and hats seen

Transition

Generalizing from n=3 to arbitrary n.

Here is one of the 10,752 winning strategies.
Sadly, the algorithmic pattern is not visible.

21

Colors of hats
the player sees

What player
P0 will guess

0,0 0
0,1 1
0,2 2
1,0 1
1,1 2
1,2 0
2,0 2
2,1 0
2,2 1

What player
P1 will guess

What player
P2 will guess

1
0
2
2
1
0
1
0
2

2
1
0
0
2
1
0
2
1

Presenter
Presentation Notes
Intro

Points
-While the oracle can provide all 10,752 examples, it cannot synthesize the generalized program for any n.
-We really want to find out players coordinate with each other
-We know coordination must occur before hats and is therefore encoded in the function
-Another type of coordination are the mutual hats that 2 people can see

Transition

Idea 1: Interact with the oracle

Fix a strategy for P0 and ask what P1 and P2 strategies
yield a winning group strategy. There are 8 of them.

22

Colors of hats
the player sees

What player
P0 will guess

0,0 0
0,1 1
0,2 2
1,0 1
1,1 2
1,2 0
2,0 2
2,1 0
2,2 1

What player
P1 will guess

What player
P2 will guess

1
0
2
2
1
0
1
0
2

2
1
0
0
2
1
0
2
1

Presenter
Presentation Notes
Intro

Points
-We really want to check the relationship between players
-We don’t have to look at all 10000 traces. Lets fix P0’s strategy
-8 strategies for P1 and P2. But we still can’t find patterns.
	-But our tool has mined the traces for a pattern.
	-The 8 traces can be decomposed into 3 independent substrategies
	-Oracles within a substrategy must coordinate, but across different ones they do not
	-We choose one value for each substrategy, and we get a complete stategy
Transition
-With this insight, we no long need to analyze the entire table at once.

Idea 2: Mine oracle’s alternative solutions

It turns out that a winning strategy can be composed
from any combination of smaller strategies.

24

Colors of hats
the player sees

What player
P0 will guess

0,0 0
0,1 1
0,2 2
1,0 1
1,1 2
1,2 0
2,0 2
2,1 0
2,2 1

What player
P1 will guess

What player
P2 will guess

1
0
2
2
1
0
1
0
2

2
1
0
0
2
1
0
2
1

Presenter
Presentation Notes
Intro
-Instead we can look at the first substrategy

Points
-Looks like we will need to use some sort of modulus operation

Transition

Idea 3: Ask the system to synthesize f

We tell the system “synthesize f that uses +,- and % ”

 f(k,n,hats) = “a program with +,-,%,sum”

and the system produces the function

 f(k,n,hats) = (k - 1 - sum(hats)) % n

which is a winning strategy parametric in k, n.

25

Presenter
Presentation Notes
Intro

Points
-With this insight, we can use the Sketch solver to synthesize a suitable expression
-Sketch can take in a template and a language of expressions and a correctness condition and synthesize an expression that satisfies the assertions.

Transition

Summary

Ask oracle to compute all strategies (programs) for n=3

Interact with the oracle by constraining it and observing
what solutions remain.

Decompose the solutions to see if a strategy can be
composed from smaller strategies.

Synthesize the function that is the parametric strategy.

26

Presenter
Presentation Notes
Intro

Points
-So we progressed in 3 steps
	-We first wrote the program and asked the oracle to give correct solutions for the strategy
	-We then decomposed the strategy to allow quicker analysis
	-Finally we synthesized an expression using the Sketch solver

Transition

27 27

Beyond synthesis of constants

Sometimes the insight is “I want to complete the hole with an of
particular syntactic form.”

– Array index expressions: A[??*i+??*j+??]

– Polynomial of degree 2: ??*x*x + ??*x + ??

– Initialize a lookup table: int strategy[N] = {??,??,??,??}

28

Angelic Programming

What's your memory of Red-Black Tree?

29

left_rotate(Tree T, node x) {
 node y;
 y = x->right;
 /* Turn y's left sub-tree into x's right sub-tree */
 x->right = y->left;
 if (y->left != NULL)
 y->left->parent = x;
 /* y's new parent was x's parent */
 y->parent = x->parent;
 /* Set the parent to point to y instead of x */
 /* First see whether we're at the root */
 if (x->parent == NULL) T->root = y;
 else
 if (x == (x->parent)->left)
 /* x was on the left of its parent */
 x->parent->left = y;
 else
 /* x must have been on the right */
 x->parent->right = y;
 /* Finally, put x on y's left */
 y->left = x;
 x->parent = y;
 }

http://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

Jim Demmel's napkin

30

Programmers often think with examples

They often design algorithms by devising and studying
examples demonstrating steps of algorithm at hand.

If only the programmer could ask for a demonstration
of the desired algorithm!

The demonstration (a trace) reveals the insight.

We create demonstration with an executable oracle.

31

Presenter
Presentation Notes
TODO:

Give a concise example of how a demonstration reveals the insight.
Say that the hope is that with oracles, even a fuzzy insight can be communicated?
Say that the problem is how to tell the oracle what to demonstrate?

Say the oracle can be computed, how, and how far it scales. Not a theoretical device.

Angelic choice

Angelic nondeterminism.

Oracle makes an angelic (clairvoyant) choice.

!!(S) evaluates to a value chosen from set S such that
the execution terminates without violating an assertion

32

Presenter
Presentation Notes

Ask for a demo.

Programming with oracles (DFS)

Design DFS traversal that does not use a stack.

Used in garbage collection: when out of memory, you
cannot ask for O(N) memory to mark reachable nodes

We want DFS that uses O(1) memory.

34

Depth-first search with explicit stack
 vroot = new Node(g.root)
 push(vroot); current = g.root

 while (current != vroot) {
 if (!current.visited) current.visited = true
 if (current has unvisited children) {
 current.idx := index of first unvisited child
 child = current.children[current.idx]
 push(current)
 current = child
 } else {
 current = pop()
 }

35

Node

children

idx

Presenter
Presentation Notes
We used one non-syntactic property in the course of this cleanup: the resulting code executes

	if (!current.visited) current.visit()

each time it enters a node (even when it enters a node from a child). We rely on the property that these invocations are idempotent.

Parasitic Stack

Borrows storage from its host (the graph)
accesses the host graph via pointers present in traversal code

A two-part interface:
stack: usual push and pop semantics
parasitic channel: for borrowing/returning storage

push(x,(node1,node2,…)) stack can (try to) borrow fields in nodei

pop(node1,node2,…) value nodei may be handy in returning storage

Parasitic stack expresses an optimization idea
But can DFS be modularized this way? Angels will tell us.

36

Presenter
Presentation Notes
Host is the graph --- as traversed in depth first search order

Plan: abstract the DSW backtracking structure under a stack interface (see previous slide) How to implement this stack with constant storage?

Replace regular stack with parasitic stack
 vroot = new Node(root)
 push(null); current = vroot

 while (current != vroot) {
 if (!current.visited) current.visited = true
 if (current has unvisited children) {
 current.idx := index of first unvisited child
 child = current.children[current.idx]
 push(current, (current, child))
 current = child
 } else {
 current = pop((current))
 }

37

Node

children

idx

children

idx

children

idx

Presenter
Presentation Notes
We used one non-syntactic property in the course of this cleanup: the resulting code executes

	if (!current.visited) current.visit()

each time it enters a node (even when it enters a node from a child). We rely on the property that these invocations are idempotent.

Angels perform deep global reasoning

Which location to borrow?
traversal must not need until it is returned

How to restore the value in the borrowed location?
the stack does not have enough locations to remember it

How to use the borrowed location?
it must implement a stack

Angels will clairvoyantly made these decisions for us
– in principle, human could set up this parasitic “wiring”,

too, but we failed without the help of the angels

38

Presenter
Presentation Notes
Angels make key decisions in the program
-Which location to borrow
-How to restore the locations
-How to use the borrowed locations

ParasiticStack.push
class ParasiticStack {
 var e // allow ourselves one extra storage location

 push(x, nodes) {
 // borrow memory location n.children[c]
 n = choose(nodes)
 c = choose(0 until n.children.length)

 // value in the borrowed location; will need to be restored
 v = n.children[c]

 // we are holding 4 values but have only 2 memory locations
 // select which 2 values to remember, and where
 e, n.children[c] = angelicallyPermute(x, n, v, e)
 }
 39

Presenter
Presentation Notes
Notice that the angelic code is modular in that it is unaware how the client (traversal code) operates.

Angels do the global reasoning for us.

ParasiticStack.pop
pop(values) {
 // ask the angel which location we borrowed at time of push
 n = choose(e, values)
 c = choose(0 until n.children.length)

 // v is the value stored in the borrowed location
 v = n.children[c]

 // (1) select return value
 // (2) restore value in the borrowed location
 // (3) update the extra location e
 r, n.children[c], e = angelicallyPermute(n,v,e,values)

 return r
}
 40

Running the angelic program

41

e

Push
root

Push
A

Pop
B

Push
A

Push
C

Pop
D

Pop
A

Pop
root

A

B C

D

8040 solutions synthesized

n c e child

Chooses in push

Chooses in pop

n c r child e

Input:

Example of an undesirable trace

Undesirable traces meet the spec but do not
demonstrate a desirable algorithm

// choose initial value for extra storage
e = choose(nodes)
 . . .
push(..)
 . . .
n.children[c] = angelPermute(x,n,v,e) // e

42

e

…

…
children

idx C

children

idx A

C

Presenter
Presentation Notes
Start with initial node configuration

Initialize the extra storage
-Then we call push
-Inside push, we have an angelic permutation which rearranged the points
-But what we see is really a Noop

The oracle inside the angelic permuation is coordinating with the oracle that initializes the extra storage
-we change the first, and the other must also change to compensate

Interactions in DFS

45

e

Push
vroot

Push
A

Pop
B

Push
A

Push
C

Pop
D

Pop
A

Pop
vroot

Each box represents one oracle
– All red oracles are coordinating with each other
– All yellow oracles are coordinating with each other
– All white oracles are completely independent

Let's refine the angelic program
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = angelicallyPermute(x,n,v,e)
 }
 pop(values) {
 n = choose(e, values)
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = angelicallyPermute(n,v,e,values)
 return r
} }

46

Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.

First we observe what these angels do
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = angelicallyPermute(x,n,v,e)
 }
 pop(values) {
 n = choose(e, values)
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = angelicallyPermute(n,v,e,values)
 return r
} }

47

Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.

Refinement #1
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }
 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = e, values[0], v
 return r
} }

48

Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.

Refinement #1
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = choose(nodes)
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }
 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = e, values[0], v
 return r
} }

49

Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.

Refinement #2
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = nodes[0]
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }
 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = e, values[0], v
 return r
} }

50

Presenter
Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.

Refinement #2
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = nodes[0]
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }
 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = e, values[0], v
 return r
} }

51

Presenter
Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.

Refinement #2
class ParasiticStack {
 var e : Node
 push(x, nodes) { invariant: c == n.idx
 n = nodes[0]
 c = choose(0 until n.children.length)
 e, n.children[c] = x, e
 }
 pop(values) {
 n = e
 c = choose(0 until n.children.length)
 v = n.children[c]
 r, n.children[c],e = e, values[0], v
 return r
} }

52

Presenter
Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.

Final refinement
class ParasiticStack {
 var e : Node
 push(x, nodes) {
 n = nodes[0]

 e, n.children[n.idx] = x, e
 }
 pop(values) {
 n = e

 v = n.children[n.idx]
 r, n.children[n.idx],e = e, values[0], v
 return r
} }

53

Presenter
Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.

Our results: what we synthesized

Concurrent Data Structures [PLDI 2008]
lock free lists and barriers

Stencils [PLDI 2007]
highly optimized matrix codes

Dynamic Programming Algorithms [OOPSLA 2011]
O(N) algorithms, including parallel ones

54

To be continued after lunch

How to implement the oracles (synthesis algorithms)

Hiding sketches from programmers

Similar synthesizers and the space of synthesis ideas

55

	Automatic Programming Revisited�Part I: Puzzles and Oracles��
	The Exascale Programming Challenge
	The Exascale Programming Challenge
	The Exascale Programming Opportunity
	How can CPU cycles help in programming?
	The SKETCH Language���try it at bit.ly/sketch-language
	SKETCH: just two constructs
	SKETCH is synthesis from partial programs
	Demo 1: division of a polynomial
	Example: Silver Medal in a SKETCH contest
	Intel shufps SIMD instruction
	The SIMD matrix transpose, sketched
	Demo 2: 4x4 matrix transpose
	How can synthesis help?
	The Hat Game
	Finding a winning strategy for n=2
	Finding a winning strategy for n=3
	The synthesis correctness condition (n=3)
	Computing a winning strategy for n=3
	The Hat Game, Revisited
	Generalizing from n=3 to arbitrary n.
	Idea 1: Interact with the oracle
	Idea 2: Mine oracle’s alternative solutions
	Idea 3: Ask the system to synthesize f
	Summary
	Beyond synthesis of constants
	Slide Number 28
	What's your memory of Red-Black Tree?
	Jim Demmel's napkin
	Programmers often think with examples
	Angelic choice
	Programming with oracles (DFS)
	Depth-first search with explicit stack
	Parasitic Stack
	Replace regular stack with parasitic stack
	Angels perform deep global reasoning
	ParasiticStack.push
	ParasiticStack.pop
	Running the angelic program
	Example of an undesirable trace
	Interactions in DFS
	Let's refine the angelic program
	First we observe what these angels do
	Refinement #1
	Refinement #1
	Refinement #2
	Refinement #2
	Refinement #2
	Final refinement
	Our results: what we synthesized
	To be continued after lunch

