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Once you understand how to write a program, get 
someone else to write it.          Alan Perlis, Epigram #27 

Presenter
Presentation Notes
Why is it that Moore’s Law hasn’t yet revolutionized the job of the programmer?   Compute cycles have been harnessed in testing, model checking, and autotuning but programmers still code with bare hands.  Can their cognitive load be shared with a computer assistant? 
 
Automatic programming of the 80’s failed relying on too much AI.  Later, synthesizers succeeded in deriving programs that were superbly efficient, even surprising, but these synthesizers first had to be formally taught considerable human insight about the domain.
 
Using examples from algorithms, frameworks, and parallel programming, I will describe how the emerging synthesis community rethought automatic programming.

The first innovation is to abandon automation, focusing instead on the intriguing new problem of how the human should communicate his incomplete ideas to her computerized algorithmic assistant, and how the assistant should talk back.  As an example, I will describe programming with angelic oracles. 
 
The second line of innovation changes the algorithmics.  Here, we have replaced deductive logic with constraint solving.  Indeed, new synthesis is to its classical counterpart what model checking is to verification, and enjoys similar benefits: because algorithmic synthesis relies more on compute cycles and less on a formal expert, it is easier to adapt the synthesizer to a new domain. 




The Exascale Programming Challenge 



The Exascale Programming Challenge 

More levels of hierarchy 
 
Accelerators everywhere 
 
The revenge of Ahmdal’s Law 
 
Programmers will be swamped in design choices 
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Presenter
Presentation Notes
Get the computer to program itself. 



The Exascale Programming Opportunity 



How can CPU cycles help in programming? 

5 



The SKETCH Language 
 
 

try it at  bit.ly/sketch-language 
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SKETCH: just two constructs 
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spec:    int foo (int x) {  
      return x + x;  
  }  

sketch:   int bar (int x) implements foo { 
          return x << ??; 
  }  

result:    int bar (int x) implements foo { 
      return x << 1; 
  }  

Presenter
Presentation Notes
say how much you gain by sketch, as opposed to trying all candidates from the language: benefit of insight

what’s the benefit of smart solving, as opposed to iteration



SKETCH is synthesis from partial programs 

8 

SKETCH 
synthesizer 

partial program 

correctness criterion 
completion 

x + x 

x << ?? 

x << 1 

No need for a domain theory.  No rules needed to rewrite  
x+x  into  2*x   into  x<<1 



Demo 1: division of a polynomial 
int spec (int x) {  
    return x*x*x-19*x+30; 
}  
 
#define Root {| ?? | -?? |} 
 
int sketch (int x) implements spec {  
    return (x - Root) * (x - Root) * (x - Root);  
} 
 
Note: Sketch divides polynomials slowly but it knows nothing 
about finding roots of polynomials. This generality enables it to 
do synthesis of arbitrary programs.  9 
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Example: Silver Medal in a SKETCH contest 

4x4-matrix transpose, the specification: 
 
int[16] trans(int[16] M) { 
  int[16] T = 0; 
  for (int i = 0; i < 4; i++) 
    for (int j = 0; j < 4; j++) 
      T[4 * i + j] = M[4 * j + i]; 
  return T; 
} 

 

Implementation idea: parallelize with SIMD 
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Intel shufps SIMD instruction 

SHUFP (shuffle parallel scalars) instruction 
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x1 x2 

return 
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The SIMD matrix transpose, sketched 
int[16] trans_sse(int[16] M) implements trans { 
  int[16] S = 0, T = 0; 
  repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??); 
  repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??); 
  return T; 
} 
int[16] trans_sse(int[16] M) implements trans { // synthesized code 
  S[4::4]   = shufps(M[6::4],   M[2::4],  11001000b); 
  S[0::4]   = shufps(M[11::4],  M[6::4],  10010110b); 
  S[12::4]  = shufps(M[0::4],   M[2::4],  10001101b); 
  S[8::4]   = shufps(M[8::4],   M[12::4], 11010111b); 
  T[4::4]   = shufps(S[11::4],  S[1::4],  10111100b); 
  T[12::4]  = shufps(S[3::4],   S[8::4],  11000011b); 
  T[8::4]   = shufps(S[4::4],   S[9::4],  11100010b); 
  T[0::4]   = shufps(S[12::4],  S[0::4],  10110100b); 
} 
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From the contestant email:  
Over the summer, I spent about 1/2 
a day manually figuring it out.  
Synthesis time: 30 minutes. 



Demo 2: 4x4 matrix transpose 
pragma options "--bnd-unroll-amnt 6 --bnd-inbits 3 --bnd-cbits 6"; 
 
int[16] transpose(int[16] mx){ 
 int x, y; 
 for(x = 0; x < 4; x++) 
    for(y = 0; y <= x; y++) 
       mx[4*x+y] = mx[4*y+x]; 
 return mx; 
} 
 
generator int[4] shufps(int[4] xmm1, int[4] xmm2, bit[8] imm8){ /* automatically rewritten */ 
 int[4] ret; 
 ret[0] = xmm1[(int)imm8[0::2]]; 
 ret[1] = xmm1[(int)imm8[2::2]]; 
 ret[2] = xmm2[(int)imm8[4::2]]; 
 ret[3] = xmm2[(int)imm8[6::2]]; 
 return ret; 
} 
 
int[16] sse_transpose(int[16] mx) implements transpose { 
 int[16] p0 = 0; 
 int[16] p1 = 0; 
 // Find the extra insight (constraint) that this version communicates to the synthesizer. 
 int steps = ??;   
 loop(steps){ p0[??::4] = shufps(mx[??::4], mx[??::4], ??); } 
 loop(steps){ p1[??::4] = shufps(p0[??::4], p0[??::4], ??); } 
 return p1; 
} 
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How can synthesis help? 

In this example, our programmer possessed enough 
knowledge to actually write the program himself.   
 

The synthesizer saved him from tedious details, like a 
compiler.   
 

Note we did not have to teach that compiler any 
SIMD optimizations, as is usually necessary. 
 
In the next example, the synthesizer will help us find 
the program (actually, a solution to a puzzle).  We 
could not solve the problem without the synthesizer. 
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The Hat Game 

There are n players in a room.  Someone will soon come by and 
put hats labeled 0 to n-1 on each of their heads.  There may be 
multiple hats with the same number. 
 
Once the hats are in place, the players cannot communicate. 
Each player must then guess which hat is on their head. A 
player can see everyone else’s hat, but not their own.  
 
The challenge is for the group to come up with a strategy such 
that at least one person correctly guesses their own hat. 
 
Assume the group knows n before they strategize. 
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Presenter
Presentation Notes
Intro
-Case study in which we used angelic programming

Points
-Explain game
-Write down guess

Transition
-Lets look at how we would solve this problem for n=2



Color of hat the 
player can see 

What player P0 
will guess 

What player P1 
will guess  

0 
1 

Finding a winning strategy for n=2 

There are only 16 strategies to consider. 
We can find a winning one manually. 
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0 

1 

0 0 

P0 P1 

1 0 

1 

0 

Presenter
Presentation Notes
Intro 

Points
-Simple enough that we can solve and verify by hand
-Define function
-Walk through one case



Finding a winning strategy for n=3 

There are now 7,625,597,484,987 possible strategies. 
We gave up on finding a winning one manually. 
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Colors of hats 
the player sees 

What player 
P0 will guess 

What player 
P1 will guess  

What player 
P2 will guess  

0,0 
0,1 
0,2 
1,0 
1,1 
1,2 
2,0 
2,1 
2,2 

Presenter
Presentation Notes
Intro

Points
-Well we tried, but it was to complex to think about how each player effects the rest

Transition
-But we can use an oracle to fill in the table for us



The synthesis correctness condition (n=3) 

p0_strategy(p1_hat, p2_hat) : int { 
   p0 : int[3][3] = { ??(0,1,2), ??(0,1,2) … } 
   return p0[p1_hat][p2_hat]; 
} 
 
… 
 
forall (i, j, k) from i, j, k  in [0,2] 
  assert i = p0_strategy(j, k) 
      or j = p1_strategy(i, k) 
      or k = p2_strategy(i, j) 

 18 



Computing a winning strategy for n=3 

We asked an oracle to compute a winning strategy. 
There are 10,752 of them. 
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Colors of hats 
the player sees 

What player 
P0 will guess 

What player 
P1 will guess  

What player 
P2 will guess  

0,0 0 1 2 
0,1 1 0 1 
0,2 2 2 0 
1,0 1 2 0 
1,1 2 1 2 
1,2 0 0 1 
2,0 2 1 0 
2,1 0 0 2 
2,2 1 2 1 

Presenter
Presentation Notes
Intro 

Points
-Forecast how to fill in the table
-We asked an oracle to give us a correct table which would work

Transition
-This is still the same type of constraint solving at a much larger level



The Hat Game, Revisited 

Now assume that the players do not know the total number of 
players, n, or their own id, k, until the hats are placed. 
 
Their winning strategy thus must be a function f(k, n, hats).  
 
Our goal is to devise such a function f.  This is our “program”. 
 
We (humans) will observe the (oracle’s) winning strategies for 
n=3 and generalize them for arbitrary n.  
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Presenter
Presentation Notes
Intro

Points
-We don’t know n
-Now we need to synthesize a function in k, n, and hats seen

Transition



Generalizing from n=3 to arbitrary n. 

Here is one of the 10,752 winning strategies. 
Sadly, the algorithmic pattern is not visible. 
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Colors of hats 
the player sees 

What player 
P0 will guess 

0,0 0 
0,1 1 
0,2 2 
1,0 1 
1,1 2 
1,2 0 
2,0 2 
2,1 0 
2,2 1 

What player 
P1 will guess  

What player 
P2 will guess  

1 
0 
2 
2 
1 
0 
1 
0 
2 

2 
1 
0 
0 
2 
1 
0 
2 
1 

Presenter
Presentation Notes
Intro 

Points
-While the oracle can provide all 10,752 examples, it cannot synthesize the generalized program for any n.
-We really want to find out players coordinate with each other
-We know coordination must occur before hats and is therefore encoded in the function
-Another type of coordination are the mutual hats that 2 people can see

Transition



Idea 1: Interact with the oracle 

Fix a strategy for P0 and ask what P1 and P2 strategies 
yield a winning group strategy.  There are 8 of them. 
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Colors of hats 
the player sees 

What player 
P0 will guess 

0,0 0 
0,1 1 
0,2 2 
1,0 1 
1,1 2 
1,2 0 
2,0 2 
2,1 0 
2,2 1 

What player 
P1 will guess  

What player 
P2 will guess  

1 
0 
2 
2 
1 
0 
1 
0 
2 

2 
1 
0 
0 
2 
1 
0 
2 
1 

Presenter
Presentation Notes
Intro

Points 
-We really want to check the relationship between players
-We don’t have to look at all 10000 traces. Lets fix P0’s strategy
-8 strategies for P1 and P2. But we still can’t find patterns. 
	-But our tool has mined the traces for a pattern.
	-The 8 traces can be decomposed into 3 independent substrategies
	-Oracles within a substrategy must coordinate, but across different ones they do not
	-We choose one value for each substrategy, and we get a complete stategy
Transition
-With this insight, we no long need to analyze the entire table at once.



Idea 2: Mine oracle’s alternative solutions 

It turns out that a winning strategy can be composed 
from any combination of smaller strategies.  
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Colors of hats 
the player sees 

What player 
P0 will guess 

0,0 0 
0,1 1 
0,2 2 
1,0 1 
1,1 2 
1,2 0 
2,0 2 
2,1 0 
2,2 1 

What player 
P1 will guess  

What player 
P2 will guess  

1 
0 
2 
2 
1 
0 
1 
0 
2 

2 
1 
0 
0 
2 
1 
0 
2 
1 

Presenter
Presentation Notes
Intro
-Instead we can look at the first substrategy

Points
-Looks like we will need to use some sort of modulus operation

Transition



Idea 3: Ask the system to synthesize f 

We tell the system “synthesize f that uses +,- and % ” 
 
   f(k,n,hats) = “a program with +,-,%,sum” 
 
and the system produces the function  
 
   f(k,n,hats) = (k - 1 - sum(hats)) % n 
 
which is a winning strategy parametric in k, n. 
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Presenter
Presentation Notes
Intro 

Points
-With this insight, we can use the Sketch solver to synthesize a suitable expression
-Sketch can take in a template and a language of expressions and a correctness condition and synthesize an expression that satisfies the assertions.

Transition



Summary 

Ask oracle to compute all strategies (programs) for n=3 
 
Interact with the oracle by constraining it and observing 
what solutions remain. 
 
Decompose the solutions to see if a strategy can be 
composed from smaller strategies. 
 
Synthesize the function that is the parametric strategy. 
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Presenter
Presentation Notes
Intro

Points
-So we progressed in 3 steps
	-We first wrote the program and asked the oracle to give correct solutions for the strategy
	-We then decomposed the strategy to allow quicker analysis
	-Finally we synthesized an expression using the Sketch solver

Transition
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Beyond synthesis of constants 

Sometimes the insight is “I want to complete the hole with an of 
particular syntactic form.” 

 
– Array index expressions: A[ ??*i+??*j+?? ] 

 
– Polynomial of degree 2:     ??*x*x + ??*x + ?? 
 
– Initialize a lookup table:     int strategy[N] = {??,??,??,??} 
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Angelic Programming 



What's your memory of Red-Black Tree? 
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left_rotate( Tree T, node x ) { 
    node y; 
    y = x->right; 
    /* Turn y's left sub-tree into x's right sub-tree */ 
    x->right = y->left; 
    if ( y->left != NULL ) 
        y->left->parent = x; 
    /* y's new parent was x's parent */ 
    y->parent = x->parent; 
    /* Set the parent to point to y instead of x */ 
    /* First see whether we're at the root */ 
    if ( x->parent == NULL ) T->root = y; 
    else 
        if ( x == (x->parent)->left ) 
            /* x was on the left of its parent */ 
            x->parent->left = y; 
        else 
            /* x must have been on the right */ 
            x->parent->right = y; 
    /* Finally, put x on y's left */ 
    y->left = x; 
    x->parent = y; 
    } 

http://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html 



Jim Demmel's napkin 
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Programmers often think with examples 

They often design algorithms by devising and studying 
examples demonstrating steps of algorithm at hand. 
 
If only the programmer could ask for a demonstration 
of the desired algorithm!   
 
The demonstration (a trace) reveals the insight. 
 
We create demonstration with an executable oracle. 
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Presenter
Presentation Notes
TODO:

Give a concise example of how a demonstration reveals the insight.
Say that the hope is that with oracles, even a fuzzy insight can be communicated? 
Say that the problem is how to tell the oracle what to demonstrate?


Say the oracle can be computed, how, and how far it scales.  Not a theoretical device.



Angelic choice 

Angelic nondeterminism. 
 
Oracle makes an angelic (clairvoyant) choice. 
 
!!(S)  evaluates to a value chosen from set S such that 
the execution terminates without violating an assertion  
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Presenter
Presentation Notes


Ask for a demo.



Programming with oracles (DFS) 

 
Design DFS traversal that does not use a stack. 
 
Used in garbage collection: when out of memory, you 
cannot ask for O(N) memory to mark reachable nodes 
 
We want DFS that uses O(1) memory. 
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Depth-first search with explicit stack 
 vroot = new Node(g.root) 
 push(vroot); current = g.root 
 
 while (current != vroot) { 
  if (!current.visited) current.visited = true 
  if (current has unvisited children) { 
   current.idx := index of first unvisited child 
   child = current.children[current.idx] 
   push(current) 
   current = child  
  } else {  
   current = pop() 
  } 
 

35 

Node 

children 

idx 

Presenter
Presentation Notes
We used one non-syntactic property in the course of this cleanup: the resulting code executes 

	if (!current.visited) current.visit()

each time it enters a node (even when it enters a node from a child).  We rely on the property that these invocations are idempotent.



Parasitic Stack 

Borrows storage from its host (the graph) 
accesses the host graph via pointers present in traversal code 

A two-part interface:  
stack: usual push and pop semantics 
parasitic channel: for borrowing/returning storage 
 
push(x,(node1,node2,…))   stack can (try to) borrow fields in nodei 

pop(node1,node2,…)   value nodei may be handy in returning storage  

 

Parasitic stack expresses an optimization idea 
But can DFS be modularized this way?  Angels will tell us. 
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Presenter
Presentation Notes
Host is the graph --- as traversed in depth first search order

Plan: abstract the DSW backtracking structure under a stack interface (see previous slide) How to implement this stack with constant storage?




Replace regular stack with parasitic stack 
 vroot = new Node(root) 
 push(null); current = vroot 
 
 while (current != vroot) { 
  if (!current.visited) current.visited = true 
  if (current has unvisited children) { 
   current.idx := index of first unvisited child 
   child = current.children[current.idx] 
   push(current, (current, child)) 
   current = child  
  } else {  
   current = pop((current)) 
  } 
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Node 

children 

idx 

children 

idx 

children 

idx 

Presenter
Presentation Notes
We used one non-syntactic property in the course of this cleanup: the resulting code executes 

	if (!current.visited) current.visit()

each time it enters a node (even when it enters a node from a child).  We rely on the property that these invocations are idempotent.



Angels perform deep global reasoning 

Which location to borrow?  
traversal must not need until it is returned 

How to restore the value in the borrowed location? 
the stack does not have enough locations to remember it 

How to use the borrowed location?  
it must implement a stack 
 

Angels will clairvoyantly made these decisions for us  
– in principle, human could set up this parasitic “wiring”, 

too, but we failed without the help of the angels 
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Presenter
Presentation Notes
Angels make key decisions in the program
-Which location to borrow
-How to restore the locations
-How to use the borrowed locations



ParasiticStack.push 
class ParasiticStack { 
    var e // allow ourselves one extra storage location  
  
    push(x, nodes) {   
  // borrow memory location n.children[c]  
  n = choose(nodes)  
  c = choose(0 until n.children.length) 
   
  // value in the borrowed location; will need to be restored 
  v = n.children[c] 
 
  // we are holding 4 values but have only 2 memory locations 
  // select which 2 values to remember, and where 
  e, n.children[c] = angelicallyPermute(x, n, v, e)  
    } 
     39 

Presenter
Presentation Notes
Notice that the angelic code is modular in that it is unaware how the client (traversal code) operates.  

Angels do the global reasoning for us.



ParasiticStack.pop 
pop(values) { 
 // ask the angel which location we borrowed at time of push 
 n = choose(e, values)  
 c = choose(0 until n.children.length) 
 
 // v is the value stored in the borrowed location 
 v = n.children[c]  

 
 // (1) select return value 
 // (2) restore value in the borrowed location 
 // (3) update the extra location e 
   r, n.children[c], e = angelicallyPermute(n,v,e,values) 
    
 return r 
} 
 40 



Running the angelic program 
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e 
 

Push 
root 

Push 
A 
 

Pop  
B 

Push 
A 
 

Push 
C 
 

Pop 
D 

Pop 
A 

Pop 
root 

A 

B C 

D 

8040 solutions synthesized 

n c e child 

Chooses in push 

Chooses in pop 

n c r child e 

Input: 



Example of an undesirable trace 

Undesirable traces meet the spec but do not 
demonstrate a desirable algorithm 
 

// choose initial value for extra storage 
e = choose(nodes) 
 . . .  
push(..) 
 . . .  
n.children[c] = angelPermute(x,n,v,e) // e 
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e 

… 

… 
children 

idx C 

children 

idx A 

C 

Presenter
Presentation Notes
Start with initial node configuration

Initialize the extra storage
-Then we call push
-Inside push, we have an angelic permutation which rearranged the points
-But what we see is really a Noop

The oracle inside the angelic permuation is coordinating with the oracle that initializes the extra storage
-we change the first, and the other must also change to compensate



Interactions in DFS 
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Each box represents one oracle 
– All red oracles are coordinating with each other 
– All yellow oracles are coordinating with each other 
– All white oracles are completely independent 



Let's refine the angelic program  
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = choose(nodes)  
  c = choose(0 until n.children.length) 
  e, n.children[c] = angelicallyPermute(x,n,v,e) 
   } 
   pop(values) { 
  n = choose(e, values)  
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = angelicallyPermute(n,v,e,values) 
  return r 
} } 
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Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.  

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.




First we observe what these angels do 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = choose(nodes)  
  c = choose(0 until n.children.length) 
  e, n.children[c] = angelicallyPermute(x,n,v,e) 
   } 
   pop(values) { 
  n = choose(e, values)  
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = angelicallyPermute(n,v,e,values) 
  return r 
} } 
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Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.  

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.




Refinement #1 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = choose(nodes)  
  c = choose(0 until n.children.length) 
  e, n.children[c] = x, e 
   } 
   pop(values) { 
  n = e 
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = e, values[0], v 
  return r 
} } 
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Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.  

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.




Refinement #1 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = choose(nodes)  
  c = choose(0 until n.children.length) 
  e, n.children[c] = x, e 
   } 
   pop(values) { 
  n = e 
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = e, values[0], v 
  return r 
} } 
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Presenter
Presentation Notes
Here we observed that there existed traces in which these three angels perfomed always the same selection.

In detail

In the first step we observed how the angel permutes the values.  

We observed that there exists a permutation that is used throughout the entire execution, for all inputs, and we replaced the angelic permutation with a deterministic one

Notice that the value v of the borrowed location is not saved by the angel, so it must be later be obtained from pop.




Refinement #2 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = nodes[0] 
  c = choose(0 until n.children.length) 
  e, n.children[c] = x, e 
   } 
   pop(values) { 
  n = e 
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = e, values[0], v 
  return r 
} } 
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Presenter
Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.



Refinement #2 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = nodes[0] 
  c = choose(0 until n.children.length) 
  e, n.children[c] = x, e 
   } 
   pop(values) { 
  n = e 
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = e, values[0], v 
  return r 
} } 
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Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.



Refinement #2 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) {         invariant: c == n.idx 
  n = nodes[0] 
  c = choose(0 until n.children.length) 
  e, n.children[c] = x, e 
   } 
   pop(values) { 
  n = e 
  c = choose(0 until n.children.length) 
  v = n.children[c] 
  r, n.children[c],e = e, values[0], v 
  return r 
} } 
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Presenter
Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.



Final refinement 
class ParasiticStack { 
 var e : Node  
 push(x, nodes) { 
  n = nodes[0] 
 
  e, n.children[n.idx] = x, e 
   } 
   pop(values) { 
  n = e 
   
  v = n.children[n.idx] 
  r, n.children[n.idx],e = e, values[0], v 
  return r 
} } 
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Presentation Notes

In the second refinement step we observed how the angel selected the borrowed node
We tested if the choice was consistent across all instances of push (it was), and then we again manually determinate the step.



Our results: what we synthesized 

Concurrent Data Structures [PLDI 2008] 
lock free lists and barriers 
 

Stencils [PLDI 2007] 
highly optimized matrix codes 
 

Dynamic Programming Algorithms [OOPSLA 2011] 
O(N) algorithms, including parallel ones 
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To be continued after lunch 

How to implement the oracles (synthesis algorithms) 
 
Hiding sketches from programmers 
 
Similar synthesizers and the space of synthesis ideas 
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